
Kiln Documentation
Release 1.0

Miguel Vieira

May 24, 2020

Contents

1 Further reading 3

2 Requirements 5

3 Support 7

4 Tutorial 9

5 Contents 11

i

ii

Kiln Documentation, Release 1.0

Kiln is an open source multi-platform framework for building and deploying complex websites whose source content
is primarily in XML. It brings together various independent software components, with Apache Cocoon at their centre,
into an integrated whole that provides the infrastructure and base functionality for such sites.

Kiln is developed and maintained by a team at the Department of Digital Humanities (DDH), King’s College London.
Over the past years and versions, Kiln (formerly called xMod) has been used to generate more than 50 websites which
have very different source materials and customised functionality. Since DDH has in-house guidelines for using TEI
P5 to create websites, Kiln makes use of certain TEI markup conventions. However, it has been adapted to work on a
variety of flavours of TEI and other XML vocabularies, and has been used to publish data held in relational databases.

Contents 1

http://cocoon.apache.org/2.1/
http://www.kcl.ac.uk/artshums/depts/ddh/
http://www.cch.kcl.ac.uk/xmod/
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/index-toc.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/index-toc.html

Kiln Documentation, Release 1.0

2 Contents

CHAPTER 1

Further reading

Apache Cocoon is at the core of Kiln, please consult its documentation for more detailed information on how to
configure its components.

3

http://cocoon.apache.org/2.1/
http://cocoon.apache.org/2.1/userdocs/index.html

Kiln Documentation, Release 1.0

4 Chapter 1. Further reading

CHAPTER 2

Requirements

Java 1.5+ is required to run the Kiln webapps. In order to use the built-in Jetty web server (for local, development use
only), Java 1.7 is required.

5

http://www.eclipse.org/jetty/

Kiln Documentation, Release 1.0

6 Chapter 2. Requirements

CHAPTER 3

Support

See our issue tracker.

7

https://github.com/kcl-ddh/kiln/issues

Kiln Documentation, Release 1.0

8 Chapter 3. Support

CHAPTER 4

Tutorial

Kiln comes with a tutorial that covers using the main components of Kiln, and is recommended for new users.

9

Kiln Documentation, Release 1.0

10 Chapter 4. Tutorial

CHAPTER 5

Contents

5.1 Quickstart

1. Download or clone the Kiln code from the GitHub repository.

2. Open a terminal window and go to the directory where Kiln is installed (hereafter KILN_HOME).

3. Run the command build.sh (Mac OS X/Linux) or build.bat (Windows), and leave the Terminal window
open.

4. Open a browser and got to http://localhost:9999/. It should display a welcome page together with some very
basic navigation.

5. Store project XML content in the folders KILN_HOME/webapps/ROOT/content/xml/tei (TEI) and
KILN_HOME/webapps/ROOT/content/xml/epidoc (EpiDoc).

6. View HTML versions of the XML at http://localhost:9999/en/text/<filename>.html (TEI) and http://localhost:
9999/en/inscriptions/<filename>.html (EpiDoc) [filetype extensions not included in <filename>]

7. Customise the templates, transformations and site URL structure. The example project in KILN_HOME/
example provides some guidance on how this can be done.

5.1.1 Principles

Overriding XSLT by using xsl:import - a Kiln XSLT is imported by a local XSLT, allowing for templates to be
redefined for the project.

URL scheme: _internal for internal-to-Cocoon Kiln URLs, admin for viewable but not public local material,
internal for local internal-to-Cocoon URLs.

The directory structure makes explicit the division between those parts of Kiln that are its core, and should not be
changed in any project installation, and the project-specific material. Kiln material is always a descendant of a directory
called kiln.

This division also carries through to the Cocoon pipelines and the XSLT they use. Some Kiln pipelines are designed
to be flexible enough to suit multiple different uses by a project-specific pipeline (see the Schematron pipelines for an

11

http://github.com/kcl-ddh/kiln/
http://localhost:9999/
http://localhost:9999/en/text
http://localhost:9999/en/inscriptions
http://localhost:9999/en/inscriptions

Kiln Documentation, Release 1.0

example). Where a Kiln pipeline uses XSLT that might reasonably be customised by a project, it calls a proxy XSLT
not within a kiln directory, that in turn imports the Kiln version. This allows for customisation without changing Kiln
core files.

5.2 Tutorial

This tutorial walks you through the creation of a basic web site edition of some historical letters. It is designed to
provide familiarity with how some of the pieces of Kiln work and can be used together. It is not a tutorial in the
individual technologies; it does not try to teach XSLT programming, or RDF, or Solr. However, it also does not require
any great knowledge of same.

5.2.1 Installation

Installation of Kiln itself is simple. You can download a ZIP file of all the code and unpack it, or use the Git version
control system to clone the repository. Either way, the code is available at the Kiln repository, and you’ll end up with
that code somewhere on your filesystem.

You’ll also need to have Java 1.7 installed. If it isn’t on your system already, you can download it from https://www.
java.com/.

5.2.2 The development server

Let’s verify that the installation worked. From the command line, cd into the directory where you installed Kiln.
There, run the build.sh script (if you are running GNU/Linux or Mac OS X) or the build.bat batch file (if you
are running Windows). You’ll see the following output on the command line:

Buildfile: <path to your Kiln>/local.build.xml
Development server is running at http://127.0.0.1:9999
Quit the server with CONTROL-C.

You’ve started Jetty, a lightweight web server, that is pre-configured to run all of the various Kiln components. Note
that it may take a few seconds after it prints out the above for the server to become responsive.

Now that the server is running, visit http://127.0.0.1:9999/ with your web browser. You’ll see a “Welcome to Kiln”
page.

Note: Changing the port

By default, the build command starts the development server on the internal IP at port 9999.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the
server on port 8080:

./build.sh -Djetty.port=8080

To change the default, edit the value of jetty.port in the file local.build.properties.

The default values of the Solr and RDF4J servers, as specified in webapps/ROOT/sitemaps/config.xmap,
use port 9999, so if you intend to use those under the dev server, that value will need to be changed.

12 Chapter 5. Contents

https://github.com/kcl-ddh/kiln/
https://www.java.com/
https://www.java.com/
http://127.0.0.1:9999/

Kiln Documentation, Release 1.0

5.2.3 Adding content

The main content of many Kiln sites is held in TEI XML files, so let’s add some. Unzip the accompanying set
of TEI files into webapps/ROOT/content/xml/tei/.

Now navigate to the text overview at http://127.0.0.1:9999/text/, available as the Texts menu option. This presents a
table with various details of the texts in sortable columns. With only a homogenous collection of a few letters, this is
not very useful, but it does provide links to the individual texts. Follow the link to the first letter.

5.2.4 Customising the TEI display

Given the enormous flexibility of the TEI to express various semantics, and the range of possible displays of a TEI
document, there is no one size fits all solution to the problem of transforming a TEI document into HTML. Kiln comes
with XSLT code that provides support for some types of markup, but it is expected for each project to either customise
it or replace it altogether. Let’s do the former.

Kiln uses the XSLT at webapps/ROOT/stylesheets/tei/to-html.xsl to convert TEI into HTML. Open
that file in your preferred XML editor. As you can see, it is very short! All it does is import another XSLT, that
lives at webapps/ROOT/kiln/stylesheets/tei/to-html.xsl. This illustrates one of the ways that Kiln
provides a separation between Kiln’s defaults and project-specific material. Rather than change the XSLT that forms
part of Kiln (typically, files that live in webapps/ROOT/kiln), you change files that themselves import those files.
This way, if you upgrade Kiln and those files have changed, you’re not stuck trying to merge the changes you made
back into the latest file. And if you don’t want to make use of Kiln’s XSLT, just remove the import.

Note: So how does Kiln know that we want to transform the TEI into HTML using this particular XSLT?

This is specified in a Cocoon sitemap file, which defines the URLs in your site, and what to do, and to what, for each
of them. In this case any request for a URL starting texts/ and ending in .html will result in the XML file with
the same name being read from the filesystem, preprocessed, and then transformed using the to-html.xsl code.

Sitemap files are discussed later in the tutorial.

Let’s change the rendering, in an admittedly trivial way, so that the names of people and places are italicised. This
involves adding a template like the following:

<xsl:template match="tei:persName | tei:placeName">
<i>
<xsl:apply-templates />

</i>
</xsl:template>

Add this after the xsl:import element. Now reload the page showing that text, and you’ll see the text rerendered
with italics sprinkled throughout.

Warning: Cocoon automatically caches the results of most requests, and invalidates that cache when it detects
changes to the files used in creating the resource. Thus after making a change to to-html.xsl (the one in
stylesheets/tei, not the one in kiln/stylesheets/tei/), reloading the text shows the effects of that
change. However, Cocoon does not follow xsl:import and xsl:include references when checking for
changed files. This means that if you change such an imported/included file, the cached version of the resource
will be used.

To ensure that the cache is invalidated in such cases, update the timestamp of the including file, or the source
document. This can be done by re-saving the file (add a space, remove it, and save).

5.2. Tutorial 13

http://www.tei-c.org/
http://127.0.0.1:9999/text/
http://www.w3.org/standards/xml/transformation

Kiln Documentation, Release 1.0

Adding images

Images referenced within TEI files (using tei:figure/tei:graphic) are converted by the kiln/
stylesheets/tei/to-html.xsl XSLT into HTML img elements. The src URL is typically to /images/
{/tei:TEI/@xml:id}/{@url} and these URLs are resolved to look in content/images/ for the file. So if
you add the following to content/xml/tei/Had1.xml:

<figure>
<graphic url="image-filename.jpg" />
<figDesc>This becomes HTML alt text.</figDesc>

</figure>

and place image-filename.jpg (using whatever JPEG image file you wish) in content/images/Had1/,
the image should appear in the HTML display.

Images that are part of the site design, rather than content, should be put in assets/images/, and the pipelines in
kiln/sitemaps/assets.xmap used. In a template, for example:

Kiln can support any image file type, since no processing is done to the files. The pipelines simply transmit the
files with an appropriate MIME type. Pipelines exist for GIF, JPEG, and PNG images; others are easily added, to
sitemaps/main.xmap and/or kiln/sitemaps/assets.xmap.

5.2.5 Searching and indexing

Indexing

In order to provide any useful results, the search engine must index the TEI documents. This functionality is made
available in the admin section of the site. You can either index each document individually, or index them all at once.

Note: If you started Kiln with a different port from the default, you must change the port in solr-server element
in the file webapps/ROOT/sitemaps/config.xmap to match.

There are two possible parts of customising the indexing: changing the available fields that data can be indexed into,
and changing the XSLT that specifies what information gets stored in which fields.

To change the fields in the index, modify the Solr schema document at webapps/solr/conf/schema.xml.
Refer to the Solr documentation for extensive documentation on this and all other aspects of the Solr search platform.

It would be useful to index the recipient of each letter, so that this may be displayed as a facet in search results. In the
fields element in schema.xml, define a recipient field:

<field indexed="true" multiValued="false" name="recipient"
required="true" stored="true" type="string" />

After changing the schema, you will need to restart Jetty so that the new configuration is loaded. You can check
the schema that Solr is using via the Solr admin interface at http://127.0.0.1:9999/solr/ (the specific URL is http:
//localhost:9999/solr/#/collection1/schema).

Changing the data that is indexed is done by modifying the XSLT stylesheets/solr/tei-to-solr.xsl.
Just as with the TEI to HTML transformation, this XSLT imports a default Kiln XSLT that can be overridden. We
need to modify this file (not the default Kiln XSLT) to add in the indexing of the recipient into the new schema.
Looking at kiln/stylesheets/solr/tei-to-solr.xsl, the default indexing XSLT traverses through the

14 Chapter 5. Contents

http://127.0.0.1:9999/admin/
http://lucene.apache.org/solr/documentation.html
http://127.0.0.1:9999/solr/
http://localhost:9999/solr/#/collection1/schema
http://localhost:9999/solr/#/collection1/schema

Kiln Documentation, Release 1.0

teiHeader’s descendant elements in the mode document-metadata. It is a simple matter to add in a template to
match on the appropriate element:

<xsl:template match="tei:profileDesc/tei:particDesc//tei:person[@role='recipient']"
mode="document-metadata">

<field name="recipient">
<xsl:value-of select="normalize-space()" />

</field>
</xsl:template>

You will also need to add a namespace declaration for the tei prefix to the root xsl:stylesheet element:
xmlns:tei="http://www.tei-c.org/ns/1.0".

Now reindex the letters.

Warning: Omitting a namespace prefix that is used in an XPath expression in an XSLT document will cause
incomprehensible and difficult to debug errors in the output, rather than a useful error message. If you get results
that make no sense, check that all of the namespace prefixes that are used in the code are declared!

Facets

To customise the use of facets, modify the XML file webapps/ROOT/assets/queries/solr/
facet_query.xml. This file defines the base query that a user’s search terms are added to, and can also be
used to customise all other parts of the query, such as how many search results are displayed per page. The format is
straightforward; simply add elements with names matching the Solr query parameters. You can have multiple elements
with the same name, and the query processor will construct it into the proper form for Solr to interpret.

Add in a facet for the recipient field and perform a search. The new facet is automatically displayed on the search
results page, and should look something like this:

5.2. Tutorial 15

Kiln Documentation, Release 1.0

Results display

The default results display is defined in stylesheets/solr/results-to-html.xsl and gives only the title
of the matching documents. Modify that XSLT to provide whatever format of search results best suits your needs.

5.2.6 Building static pages

Not all pages in a site need be generated dynamically from TEI documents. Let’s add an “About the project” page
with the following steps.

Note: This section introduces a lot of concepts that may be entirely new to you. Some of this is about the Co-
coon software; if you need more information, try looking at the Overview of Apache Cocoon and Cocoon Concepts
documentation on the Cocoon site.

Adding a URL handler

Each URL or set of URLs available in your web application is defined in a Cocoon sitemap that specifies the source
document(s), a set of transformations to that document, and an output format for the result. Sitemaps are XML files,
and are best edited in an XML editor. Open the file webapps/ROOT/sitemaps/main.xmap.

The bulk of this file is the contents of the map:pipelines element, which holds several map:pipeline elements.
In turn, these hold the URL definitions that are the map:match elements. Each map:match has a pattern
attribute that specifies the URL(s) that it defines. This pattern can include wildcards, * and **, that match on any
sequence of characters except / and any sequence of characters, respectively.

The order of the map:match elements is important — when a request for a URL is handled by Kiln, it is processed
using the first map:matchwhose pattern matches that URL. Then the child elements of the map:match are executed
(the XML here is all interpreted as code) in order.

Go to the part of the document that defines the handler for the search/ URL. Below that, add in a match for the
URL about.html. Since we’ll be putting the content of the page we want to return into the template (this is not the
only way to do it!), our source document is just the menu, and the only transformation is applying the template. Your
map:match should look something like the following (and very similar to the one for the home page):

<map:match id="local-about" pattern="*/about.html">
<map:aggregate element="aggregation">
<map:part src="cocoon://_internal/menu/main.xml?url={1}/about.html" />

</map:aggregate>
<map:transform src="cocoon://_internal/template/about.xsl">
<map:parameter name="language" value="{1}" />

</map:transform>
<map:serialize />

</map:match>

Even in such a short fragment there is a lot going on. The pattern="about.html" attribute specifies that when a
request is made for the URL http://localhost:9999/about.html (assuming we are running on the default
Kiln development server), the response is defined by the contents of this map:match element. As mentioned above,
each of these definitions consists of generating a source document, transforming it in some fashion, and serialising the
result in some format (such as XML or HTML or PDF). Only one document can be generated, and it is serialised only
once, but there can be any number of transformations that occur in between.

map:aggregate creates an XML document with a root element of aggregation, containing in this case one
part (subelement). This part is the product of internally making a request for the URL _internal/menu/main.
xml?url=about.html, which returns the menu structure. The use of URLs starting with cocoon:/ is com-

16 Chapter 5. Contents

http://cocoon.apache.org/2.1/overview.html
http://cocoon.apache.org/2.1/userdocs/concepts/index.html

Kiln Documentation, Release 1.0

mon, and allows a modular structure with lots of individual pieces that can be put together. If you want to see the
map:match that handles this menu URL, open webapps/ROOT/kiln/sitemaps/main.xmap and look for
the kiln-menu pipeline.

Note: A pipeline (a collection of map:match elements) may be marked as internal only (map:pipeline
internal-only="true"), meaning that it is only available to requests from within Kiln (via a cocoon:/ or
cocoon:// URL). If you request a URL that is matched by such an internal pipeline, such as via your browser, it
will not match.

Kiln’s generic pipelines are generally marked as internal only, and are grouped under the URL _internal (eg,
http://localhost:9999/_internal/menu/main.xml). It also uses the convention of putting internal
only pipelines that are project specific under the URL internal (without the initial underscore).

The templating transformation, which puts the content of the aggregation element into a template, also internally
requests a URL. That URL returns the XML template file transformed into an XSLT document, which is then applied
to the source document!

Finally, the document is serialised; in this case no serializer is specified, meaning that the default (HTML 5) is used.

Now that the about.html URL is defined, try requesting it at http://127.0.0.1:9999/about.html. Not surprisingly,
an error occurred, because (as the first line of the stacktrace reveals) there is no about.xml template file. It’s time
to make one.

Adding a template

Template files live in webapps/ROOT/assets/templates/. They are XML files, and must end in .xml. In
the map:match we just created, the template was referenced at the URL cocoon://_internal/template/
about.xsl — there the xsl extension informally specifies the format of the document returned by a request to that
URL, but it reads the source file about.xml in the templates directory. You can see how this works in the sitemap
file webapps/ROOT/kiln/sitemaps/main.xmap in the kiln-templating pipeline.

Create a new file, about.xml, in the template directory. We could define everything we want output in this file,
but it’s much better to reuse the structure and style used by other pages on the site. Kiln templates use a system of
inheritance in which a parent template defines arbitrary blocks of output that a child template can override or append
to. Open the base.xml file in the templates directory to see the root template the default Kiln site uses. Mostly this
is just a lot of HTML, but wrapped into chunks via kiln:block elements. Now look at the tei.xml template,
which shows how a template can inherit from another and provide content only for those blocks that it needs to.

Go ahead and add to about.xml (using tei.xml as a guide) whatever content you want the “About the project”
page to have. This should just be HTML markup and content, placed inside the appropriate kiln:block elements.
Since there is no source document being transformed, there’s no need to have the xsl:import that tei.xml has,
and wherever it has xsl:value-of or xsl:apply-templates, you should just put in whatever text and HTML
5 markup you want directly.

Updating the menu

In the map:match you created in main.xmap above, the aggregated source document consisted only of a call to
a URL (cocoon://_internal/menu/main.xml?url={1}/about.htm) to get a menu document. In that
URL, main.xml specifies the name of the menu file to use, which lives in webapps/ROOT/assets/menu/.
Let’s edit that file to add in an entry for the new About page. This is easy to do by just inserting the following:

<menu match="local-about" label="About the project" />

5.2. Tutorial 17

http://127.0.0.1:9999/about.html

Kiln Documentation, Release 1.0

Reload any of the pages of the site and you should now see the new menu item. Obviously this menu is still very
simple, with no hierarchy. Read the full menu documentation for details on how to handle more complex setups.

5.2.7 Harvesting RDF

In order to make use of Kiln’s RDF capabilities, some setup is required. Firstly create a repository in the RDF4J
server using the “New repository” link at http://127.0.0.1:9999/rdf4j-workbench/, using the default options. The ID
you provide should just contain letters.

Next set two variables in webapps/ROOT/sitemaps/config.xmap: sesame-server-repository to
the name of the repository you just created, and rdf-base-uri to any absolute URI for your triples; we’ll use
http://www.example.org/.

With that setup done, it is time to create the XSLT that will generate RDF XML from the TEI documents. Place
the provided harvesting XSLT at webapps/ROOT/stylesheets/rdf/tei-to-rdf.xsl (replacing the
existing placeholder file). Now you can harvest the RDF data using the links in the admin. You can use the workbench
link given above to examine the data in the repository.

Note: Both the ontology and the harvesting are primitive, and designed to be simple enough for the tutorial, with-
out being entirely trivial. Harvesting the ontology from each TEI document is not good practice, nor is harvesting
identifiers multiple times for the same entity.

5.2.8 Querying RDF

Having put RDF data into the repository, it is of course necessary to be able to get it back out. The simplest ap-
proach is to create an XML file in webapps/ROOT/assets/queries/sparql/ that has a root query element
containing the plain text of the SPARQL query.

For example, to retrieve just the triples giving the recipient of each letter, save the following to webapps/ROOT/
assets/queries/sparql/recipients.xml:

<query>
PREFIX ex:<http://www.example.org/>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT { ?correspondence ex:has_recipient ?recipient ;
ex:has_document ?letter . }

WHERE { ?correspondence ex:has_recipient ?recipient ;
ex:has_document ?letter . }

</query>

Note: Within an XML SPARQL query document, XML rules apply, meaning that XML-significant characters (pri-
marily <) need to be escaped (<).

To get the results from this query, use the URL cocoon://admin/rdf/query/graph/recipients.xml in
a sitemap’s map:generate or map:part src attribute. Remember that map:generate and map:aggregate
(which contains map:part elements) are the way that Cocoon generates a source document.

Note: While the Sesame RDF server can return results in various formats, due to Kiln working best with XML
documents it is set up to make Graph Queries (using the CONSTRUCT command) with results in RDF XML.

18 Chapter 5. Contents

http://127.0.0.1:9999/rdf4j-workbench/
http://www.example.org/

Kiln Documentation, Release 1.0

Let’s use a similar set of query results to display a list of other letters to the same recipient on each letter’s page. As it
stands the query returns the letters for all recipients in the collection, not just those that match a particular recipient.
Therefore we need a way to pass in the name of the current letter’s recipient to the query and get back the filtered
results. Remember that the query document is just an XML document, so we can modify it with XSLT to supply that
value.

The new query should be saved at webapps/ROOT/assets/queries/sparql/recipients.xml (you
don’t need the old version). Take a look at how it has changed, through the addition of the recipient element
placeholder and using a custom output that better matches the information we want.

The URL mentioned above for performing a query of the RDF server calls the URL cocoon://admin/rdf/
construct/graph/{1}.xml (where “{1}” is whatever is matched by the “**” of the first URL). This URL is
handled by a map:match in webapps/ROOT/sitemaps/rdf.xmap, by reading the specified file. It is this
map:match that needs to be modified or added to in order to customise the query.

Since you may want to handle multiple SPARQL queries in different ways, we’ll add another map:match, before the
one with the id “local-rdf-query-from-file”. Its pattern needs to match /admin/rdf/construct/graph/**.
xml, but be more specific to catch only the recipient query. There also needs to be an element in the URL that specifies
the particular recipient we want to include in the query. A pattern of construct/graph/recipient/*.xml is
suitable, where * will be the recipient name. The path to the query file can be specified explicitly.

Note: The “/admin/rdf” part of the URL is common to all patterns specified in the rdf.xmap file. A sitemap file
(*.xmap) includes another sitemap by mounting it at a particular URL, and can specify a URI prefix that is common
to all URL patterns defined therein. See the uri-prefix attributes on the map:mount elements in main.xmap
and admin.xmap.

The full map:match is as follows:

<map:match pattern="construct/graph/recipient/*.xml">
<map:generate src="../assets/queries/sparql/recipients.xml" />
<map:transform src="../stylesheets/rdf/add-recipient.xsl">
<map:parameter name="recipient" value="{1}" />

</map:transform>
<map:serialize type="xml" />

</map:match>

Note how the name of the recipient (that will be matched by * in the pattern) is passed as a parameter to the XSLT.
That XSLT, which is very simple, is as follows:

<xsl:stylesheet version="2.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="recipient" />

<xsl:template match="recipient">
<xsl:value-of select="$recipient" />

</xsl:template>

<xsl:template match="*">
<xsl:copy>

<xsl:apply-templates />
</xsl:copy>

</xsl:template>
</xsl:stylesheet>

This should be saved to webapps/ROOT/stylesheets/rdf/add-recipient.xsl.

5.2. Tutorial 19

Kiln Documentation, Release 1.0

Now of course we need to call the query URL, including the specific recipient name to search on. This means the
request for that URL must come at a point in the processing that has access to the TEI document being displayed.
We’ll use an XInclude to include the query results in our TEI document. This works by adding an XInclude element
with an href attribute specifying the URL of the resource to be included, and then using Cocoon’s XInclude processor
to perform the actual inclusion.

To add the XInclude element, we of course use XSLT. In webapps/ROOT/sitemaps/main.xmap, modify the
map:match for TEI display (its id is “local-tei-display-html”) to add the line:

<map:transform src="../stylesheets/tei/add-recipient-query.xsl" />

before the existing map:transform. Then place the provided XSLT at webapps/ROOT/stylesheets/tei/
add-recipient-query.xsl. This XSLT just copies the existing document and adds the XInclude element.

To actually process the XInclude element so that the resource at the URL it specifies is included into the document,
add the following line to the map:match, immediately after the map:transform element you just added:

<map:transform type="xinclude" />

Now the document that is manipulated by the template consists of a top-level aggregation element that has three
sub-elements: tei:TEI (the TEI document), kiln:nav (the site navigation), and rdf:RDF, the query results. It’s
now possible, after all this setup, to modify the template to transform the query results into the list of other letters to
the same recipient. Edit webapps/ROOT/assets/templates/tei.xml and add the line:

<xsl:apply-templates mode="recipients" select="/aggregation/rdf:RDF" />

after the line that applies templates to the teiHeader element (and before the closing div tag). You will also need
to add a namespace declaration to the kiln:root element:

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

Now edit webapps/ROOT/stylesheets/tei/to-html.xsl and add in the following (along with, again, the
RDF namespace declaration and one binding the prefix ex to http://www.example.org/; you’ll get some odd
errors if you don’t!):

<xsl:template match="rdf:RDF" mode="recipients">
<xsl:if test="count(rdf:Description) > 1">
<div class="section-container accordion" data-section="accordion">

<section>
<h2 class="title" data-section-title="">
<small>Other Letters to this Recipient</small>

</h2>
<div class="content" data-section-content="">
<ul class="no-bullet">

<xsl:apply-templates mode="recipients" />

</div>
</section>

</div>
</xsl:if>

</xsl:template>

<xsl:template match="rdf:Description" mode="recipients">
<xsl:variable name="tei_id" select="ex:has_identifier" />
<xsl:if test="$tei_id != /aggregation/tei:TEI/@xml:id">

(continues on next page)

20 Chapter 5. Contents

http://www.w3.org/TR/xinclude/

Kiln Documentation, Release 1.0

(continued from previous page)

<xsl:value-of select="ex:has_date" />

</xsl:if>

</xsl:template>

And there it is! It’s important to note that the above is not the only way to achieve this result. The XInclude step
might have been incorporated into the TEI preprocessing pipeline; or the RDF query modified to use the TEI ID as
the variable rather than the recipient’s name; or the letter title harvested and used as the link title rather than the date.
Much depends, in crafting the components that go into generating the resource for a URL, on whether and how those
components are used by other parts of the system.

5.2.9 Development aids

The admin section provides a few useful tools for developers in addition to the processes that can be applied to texts.
The Introspection section allows you to look at some of what Kiln is doing when it runs.

Match for URL takes a URL and shows you the full Cocoon map:match that processes that URL. It expands all
references, and links to all XSLT, so that what can be scattered across multiple sitemap files, with many references to
* and **, becomes a single annotated piece of XML. Mousing over various parts of the output will reveal details such
as the sitemap file containing the line or the values of wildcards.

Much the same display is available for each map:match that has an ID, in Match by ID.

Finally, Templates by filename provides the expanded XSLT (all imported and included XSLT are recursively included)
for each template, and how that template renders an empty document.

The level of detail in the error messages Kiln provides can be reduced by setting the debug element’s value to 0 in
the file webapps/ROOT/sitemaps/config.xmap. This should be done in production environments to avoid
providing useless and/or system information revealing information to users.

5.3 Kiln structure and file layout

Kiln uses a very specific file structure, as outlined below. It creates a degree of separation between the Kiln files, that
should not be modified, and the project-specific files, keeping each in their own directories.

• build.bat — Ant startup script for Windows.

• build.sh — Ant startup script for Mac OS X/Linux.

• buildfiles — Ant core build files. This should not need to be modified.

• local.build.properties — Local Ant properties file.

• local.build.xml — Local Ant build file to override core functionality.

• example - Example webapps.

• sw — Software used in building and running Kiln.

• webapps

– ROOT — Project webapp.

* assets

· foundation - Foundation CSS/JS framework

· images - Non-content images.

5.3. Kiln structure and file layout 21

http://127.0.0.1:9999/admin/
http://127.0.0.1:9999/admin/introspection/

Kiln Documentation, Release 1.0

· menu — Navigation menu.

· queries - XML containing base queries

solr - Solr query fragments

· schema

menu — Kiln schema, do not change.

tei — Schema for TEI files.

test — Kiln schema for test-case files, do not change.

· scripts — JavaScript files and libraries.

· styles — CSS files and libraries.

· templates — Templates for content display.

admin - Templates for the admin system.

· translations - Catalogue files containing translations of site content.

* content

· images — Project/content images.

· xml

authority - Authority files.

indices - Content index files.

tei — TEI content files.

epidoc - EpiDoc content files.

* kiln — Kiln core files, should not need to be modified.

* mount-table.xml — Cocoon’s sitemap mount table (do not modify).

* not-found.xml — Default file to display when a resource is not found.

* resources — Cocoon resources (do not modify).

* sitemap.xmap — Cocoon default sitemap (do not modify).

* sitemaps — Project’s sitemaps.

· admin.xmap — Admin and editorial pipelines.

· config.xmap — Configuration (global variables, etc).

· internal.xmap - Internal (not exposed by URL) pipelines.

· main.xmap — Main pipelines.

· rdf.xmap — RDF pipelines.

· solr.xmap — Search pipelines.

· test.xmap — Automated testing pipelines.

* stylesheets — Project’s XSLT stylesheets.

· defaults.xsl — Defines default globals and reads parameters from the sitemaps.

· escape-xml.xsl - Formats XML for literal display within HTML.

· admin - Admin and editorial transformations.

22 Chapter 5. Contents

Kiln Documentation, Release 1.0

· epidoc - EpiDoc display.

· error - Error handling.

· introspection - Introspection of sitemaps and XSLT.

· menu - Menu manipulation.

· metadata - Extraction of metadata from files.

· rdf - RDF harvesting and querying.

· schematron — Schematron output.

· solr — Searching and indexing.

· system — Cocoon stylesheets (do not modify).

· tei — TEI display.

· test — Display of automated test results.

* test-suite — Project’s test cases and data.

· cases — Test-case files.

· data — Expected output data.

* WEB—INF — Webapp configuration.

– openrdf-sesame and openrdf-workbench — RDF / Linked Open Data framework.

– solr — Searching framework.

* conf

· schema.xml - Definition of fields etc.

5.4 Components

• Apache Cocoon web development framework for XML processing, built with integrated eXist XML database
that can be used for storage, indexing and searching using XPath expressions.

• Apache Solr searching platform for indexing, searching and browsing of contents.

• Sesame 2 for storage and querying of RDF data.

• Apache Ant build system that has tasks for running the built-in web application server, running the Solr web
server, creating a static version of the website, generating a Solr index of all the desired content.

• Jetty web application server for immediate running of Cocoon with automatic refreshing of changes.

• An XSLT-based templating language that supports inheritance, similar to Django’s template block system.

• Foundation, a set of HTML/CSS/JavaScript building blocks.

5.4. Components 23

http://cocoon.apache.org/2.1/
http://lucene.apache.org/solr/
http://www.openrdf.org/
http://ant.apache.org/
http://www.eclipse.org/jetty/
http://docs.djangoproject.com/en/dev/topics/templates/#template-inheritance
http://foundation.zurb.com/

Kiln Documentation, Release 1.0

5.4.1 Architecture

In a production web server context, Kiln integrates with other web publishing tools to support images (IIPim-
age/Djatoka), maps (GeoServer; MapServer; OpenLayers) and other data sources, like relational data (MySQL or
other RDBMS).

5.4.2 Customisation

Kiln has been developed around the concept of the separation of roles, allowing people with different backgrounds,
knowledge and skills to work simultaneously on the same project without overriding each other’s work. The parts of
the system used by developers, designers and content editors are distinct; further, the use of a version control system
makes it simpler and safer for multiple people with the same role to work independently and cooperatively.

Since it is impossible to predict every eventuality with regards to a project’s specific XML markup, Kiln offers basic
output options which cover the functionality and formats (HTML, PDF, etc) common to all websites, together with an
extensible framework supporting the development of any custom functionality that is needed. The system provides for
a high-level of customisation, beyond the usable and useful defaults, in the following other areas:

• Schematron validation based on, and linked to, encoding guidelines published in ODD.

• Editorial workflow validation. Kiln provides web-based management pages that allow XML files to be checked
for inconsistencies and errors.

• Templates for common types of pages, such as search and search results, indices, and bibliographies.

• XSLT for indexing contents for Solr. By default it indexes the full text and all the references to marked up
entities.

24 Chapter 5. Contents

Kiln Documentation, Release 1.0

Kiln provides native support for multilingual websites, RSS feeds, form processing, and automated navigation such as
sitemaps and indexes, but with some customisation can support the publishing of more complex materials with much
deeper markup, such as medieval charters, musicological bibliographies, classical inscriptions, biographies, glossaries
and so forth.

5.4.3 Templates

Kiln provides a templating mechanism that provides full access to XSLT for creating the output, and an inheritance
mechanism. Templates use XSLT as the coding language to create any dynamic content. Template inheritance allows
for a final template to be built up of a base skeleton (containing the common structure of the output) and ‘descendant’
templates that fill in the gaps. In addition to supplying its own content, a block may include the content of the block it
is inheriting from.

• Example of basic structure:

<kiln:root>
<kiln:parent>

<!-- Extend another template by including it. -->
<xi:include href="base.xml" />

</kiln:parent>
<kiln:child>

<!-- Override a block defined in an ancestor template. -->
<kiln:block name="title">

<h1>Title here</h1>
</kiln:block>

</kiln:child>
</kiln:root>

• Example of inheriting content:

<kiln:block name="title">
<!-- Include the parent template's content for this block. -->
<kiln:super />

(continues on next page)

5.4. Components 25

Kiln Documentation, Release 1.0

(continued from previous page)

<!-- Add in new content. -->
<h2>Smaller title here</h2>

</kiln:block>

Fuller documentation is available.

5.5 Running the webapp

5.5.1 Development

For development work, Kiln provides the Jetty web application server, pre-configured, to minimise setup. To use it:

• Run the build script found in the KILN_HOME directory. On Windows double-clicking the BAT file is suffi-
cient.

• Open the URL http://localhost:9999/ (for the root of the site).

• To stop the web server, press Ctrl-C in the shell window.

5.5.2 Production

The built-in Jetty web server is not suitable for production deployments, and a more robust solution such as Apache
Tomcat should be used. Kiln uses the standard webapp structure, so deployment is a matter of copying the files in
webapps into the server’s existing webapps directory. Under Tomcat, at least, the Solr webapp requires an extra step:
adding a solr.xml file specifying a Tomcat Context to TOMCAT_HOME/conf/Catalina/localhost/. An
example of such a file is provided at webapps/solr/conf/solr.xml.

Further, there are good reasons to run a proxying web server in front of Tomcat, for caching, load balancing, and/or
URL rewriting. It is advised that Solr and RDF4J not be exposed to any clients (including users) that are not local (eg
Cocoon). If this is required, in the case of Solr, a more recent version of Solr should be used than that which comes
with Kiln.

5.5.3 Static Build

Kiln includes a task that allows to create a static version of the website. To execute it:

• Run the build script as described above to start the web application.

• Re-run the build script supplying static as argument.

5.5.4 WAR Build (Web Application Archive)

Kiln includes a task that allows to create a Web Application Archive (for use with Apache Tomcat, e.g.). To execute
it:

• Run the build script supplying war as argument.

26 Chapter 5. Contents

http://localhost:9999/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://tomcat.apache.org/

Kiln Documentation, Release 1.0

5.6 Using Kiln with the latest version of Solr

• Download and set up Solr

• Create a new Solr core for the Kiln project

• Copy the default Solr settings from configsets/_default/ into the new core

• Set XML as the default Solr response in solrconfig.xml:

<queryResponseWriter name="xml" default="true" class="solr.XMLResponseWriter" />

• Copy the schema fields from the Kiln Solr to the new Solr:

– Note that some field types have been deprecated or renamed in the latest versions of Solr, make sure
to update those accordingly

– For example the field types int and float are now called pint and pfloat

• Edit the Kiln config.xmap sitemap, and update solr-server to the new Solr URL. The Solr URL
should point to the core, and not just to the root Solr URL, for example http://localhost:8983/solr/
core_name/.

5.7 Navigation

Navigation structures (menu hierarchies and breadcrumbs) are defined in XML files that accord to the Kiln menu
schema (see webapps/ROOT/assets/schema/menu/menu.rng). These specify a hierarchy of labels and
their associated URLs (which may be external to the Kiln site).

By default Kiln’s navigation is configured in the file KILN_HOME/webapps/ROOT/assets/menu/main.xml.
It is possible to have multiple menu files used in a single site, and even within a single map:match.

The structure of a menu is that of a list of items, with each item being able to hold another list of items. However, it
makes a distinction between a kiln:menu and a kiln:item. The former may or may not reference a resource,
while the latter must. A kiln:menu may have children, while a kiln:item may not.

It is important to understand that there is no necessary connection between the position of a kiln:menu or
kiln:item in the hierarchy, and the URL it references. Specifically, the @href of an element, if it is not an
absolute or root relative URL, is appended to the ‘path’ of @root values from its ancestors.

For example, given the following menu:

<root xmlns="http://www.kcl.ac.uk/artshums/depts/ddh/kiln/ns/1.0">
<menu href="text/" label="Texts">
<item href="intro.html" label="Introduction" />
<menu label="Reports" root="text/reports">

<item href="1.html" label="Report #1" />
</menu>

</menu>
</root>

The “Texts” item links to text/, “Introduction” links to intro.html (not text/intro.html), and “Report
#1” links to text/reports/1.html. “Reports” is not a link at all.

Requiring explicit @root values in order to provide a link hierarchy allows for a hierarchical menu to map on to a
less or differently organised underlying URL structure.

The simpler form of the above example menu, with everything in a nice hierarchy, is:

5.6. Using Kiln with the latest version of Solr 27

https://lucene.apache.org/solr/guide/solr-tutorial.html
https://lucene.apache.org/solr/guide/8_3/collections-core-admin.html

Kiln Documentation, Release 1.0

<root xmlns="http://www.kcl.ac.uk/artshums/depts/ddh/kiln/ns/1.0">
<menu href="" label="Texts" root="text">
<item href="intro.html" label="Introduction" />
<menu label="Reports" root="reports">

<item href="1.html" label="Report #1" />
</menu>

</menu>
</root>

Note that there is no requirement to pin any @href or @root to a root URL (/). This will be handled automatically
by the menu processor. That includes, whether or not the references are root relative or not, adjusting the URLs if Kiln
is mounted at a URL other than /.

If a constructed URL is meant to reference the same server, but to a path outside of Kiln’s context, start the @href or
@root with “//”.

5.7.1 Using kiln:url-for-match

Rather than explicitly specifying URLs via the @root and @href attributes, the kiln:url-for-match function
can be indirectly used in a menu. Specify the id of the map:match used to process the URL in a kiln:menu or
kiln:item’s @match attribute, and if any parameters are required they can be specified (whitespace delimited) in
the @params attribute. For example:

<root xmlns="http://www.kcl.ac.uk/artshums/depts/ddh/kiln/ns/1.0">
<menu label="Texts" match="texts-home">
<item match="texts-intro" label="Introduction" />
<menu label="Reports">

<item label="Report #1" match="texts-report" params="1" />
</menu>

</menu>
</root>

This method is greatly preferable to using @href for links within Kiln.

5.7.2 Marking the active item

The menu XML that is returned by cocoon://_internal/menu/**.xml can have a menu item matching a
supplied URL marked as active. This is useful for display a menu with the item that matches the current position in
the navigation structure highlighted.

To achieve this, supply a querystring to the Cocoon URL with a url parameter containing the URL to mark as active:

<map:match pattern="*/text/**/*.html">
<map:aggregate element="aggregation">
<map:part label="tei" src="cocoon://internal/tei/preprocess/{2}.xml" />
<map:part src="cocoon://_internal/menu/{1}/main.xml?url={1}/text/{2}/{3}.html" />

</map:aggregate>
...

</map:match>

The appropriate li element will be annotated with a class attribute with the value “active”.

The supplied URL should be root relative, but without the initial “/”, as in the example above.

Note that it does not matter what the URL of the request is; the menu uses only the URL explicitly passed to it. This
allows for the same menu item to be marked as active for a multitude of URLs.

28 Chapter 5. Contents

Kiln Documentation, Release 1.0

5.7.3 Translation and switching languages

To supply a key for looking up the translation of a menu item’s label, add an i18n:key attribute to the item; translated
strings are supplied as usual in assets/translations/messages_<language code>.xml.

Menu items, by default, link within the current language context. In order to have menu items that switch language
context (ie, to point to a URL with a different language code as the first part of the path), supply a language attribute
to the menu item, whose value is the language code the link should point to:

<item label="Recherche" language="fr" match="local-search" />

To link to the same URL only with a different language, use the language_switch attribute to specify the new
language code:

<item label="English" language_switch="en" />

For linking to non-public URLs that do not have a language parameter (such as admin URLs), supply an empty
language attribute.

For menus that are used in no language context (such as the admin’s menu), the map:match should reference the
menu pipeline that takes no language code:

<map:match pattern="admin/*.html">
<map:aggregate element="aggregation">
<map:part src="cocoon://_internal/menu/admin.xml?url=admin/{1}.html" />

</map:aggregate>
...

</map:match>

5.8 URL matching

Kiln provides a mechanism for generating full URLs to Kiln resources based on the ID of a sitemap’s map:match
element. Since the actual URL is specified only in the map:match/@pattern, it can be changed without breaking
any generated links, provided the number and order of wildcards in the @pattern are not changed. If they are, then
at least it is easy to find all references to that map:match by searching the XSLT for its @id.

To use this functionality, include the XSLT cocoon://_internal/url/reverse.xsl and call the
kiln:url-for-match function, passing the ID of the map:match to generate a URL for, a sequence containing
any wildcard parameters for that URL, and a Boolean indicating whether to force the URL to be a cocoon:// URL.
For example:

<xsl:text>Link title</xsl:text>

This generates a root-relative URL based on the @pattern value of the map:match with the ID “local-tei-display-
html”. If the identified map:match is part of a pipeline that is marked as internal-only="true", the generated
URL is a cocoon:// URL.

If no wildcard parameters are required, pass an empty sequence:

Search

If the third argument is true (eg, 1), then regardless of whether the pipeline the match belongs to is internal or not, the
generated URL will be a cocoon:// URL. This should be used when the generated URL will be used for situations
in which the URL is evaluated without a webserver context, such as XIncludes.

5.8. URL matching 29

Kiln Documentation, Release 1.0

Be sure to declare the kiln namespace (http://www.kcl.ac.uk/artshums/depts/ddh/kiln/ns/1.0),
or else the call will be treated as a plain string.

Warning: Neither Kiln nor Cocoon performs any checks that the id values you assign to map:match elements
are unique, either within a single sitemap file or across multiple sitemaps. If the same ID is used more than once,
the first one (in sitemap order) will be used by the url-for-match template.

Warning: When developing in Kiln, be aware that all of the sitemap files must be well-formed XML, or this
XSLT will not produce any results. This may lead to odd problems throughout the site that have no connection
with the invalid sitemap.

5.9 Templating

Kiln provides a templating mechanism that provides full access to XSLT for creating the output, and an inheritance
mechanism.

Template inheritance allows for a final template to be built up of a base skeleton (containing the common structure of
the output) and ‘descendant’ templates that fill in the gaps.

This inheritance system works in much the same way as Django’s template inheritance.

5.9.1 Using a template

To apply a template to a content source, a Cocoon map:transform is used, as follows:

<map:transform src="cocoon://_internal/template/path/to/template.xsl"/>

The matching template looks for the file assets/templates/path/to/template.xml. Note that the exten-
sion of the template file is xml.

5.9.2 Writing a template

The basic structure of a template is as follows:

<kiln:root xmlns:kiln="http://www.kcl.ac.uk/artshums/depts/ddh/kiln/ns/1.0"
xmlns:xi="http://www.w3.org/2001/XInclude">

<kiln:parent>
<xi:include href="base.xml"/>

</kiln:parent>
<kiln:child>

<kiln:block name="head-title">
</kiln:block>

</kiln:child>
</kiln:root>

In a base template (that is, one that does not extend another template), there are no kiln:parent or kiln:child
elements, only kiln:root and kiln:block elements (and whatever content the template may hold, of course).

In a template that extends another, the template being extended is referenced by an xi:include, the only allowed
content of kiln:parent.

30 Chapter 5. Contents

http://www.djangoproject.com/

Kiln Documentation, Release 1.0

5.9.3 Blocks

Block names must be unique within a template.

Attribute blocks

In order to create a block to cover the contents of an attribute, define a block immediately after the element holding
the attribute, specifying the name of the attribute it is a block for in the attribute attribute.

<kiln:block name="ul-class" attribute="class">

<xsl:text>block default</xsl:text>
</kiln:block>

Multiple attribute blocks for the same element should simply be defined in series. It is only necessary that they occur
before any non-attribute blocks within that element.

Inheriting content

In addition to supplying its own content, a block may include the content of the block it is inheriting from. To do so,
an empty kiln:super element should be added wherever the inherited content is wanted (multiple kiln:super
elements may occur within a single block.

<kiln:block name="nav">
<kiln:super/>
<p>Extra navigation here.</p>

</kiln:block>

If the block being inherited also contains an kiln:super element, then that referenced content will also be included.

5.9.4 Dynamic content

Templates use XSLT as the coding language to create any dynamic content. xsl:stylesheet and
xsl:template elements must not be used; the process that compiles the template into an XSLT wraps the template’s
XSL statements in a single xsl:template element matching on “/”; all processing occurs within this template, or
imported/included XSLT.

xsl:import and xsl:include elements may be used (and the compiler will move them to the beginning of the
XSLT), as may xsl:apply-templates and xsl:call-template.

5.9.5 Referencing assets

To reference assets (such as images, CSS and JavaScript files), ensure that the default variables XSLT is imported, and
append the path to the file (relative to the assets directory) after the variable reference {$kiln:assets-path}.

<xsl:import href="cocoon://_internal/template/xsl/stylesheets/defaults.xsl" />

<kiln:block name="css">
<link href="{$kiln:assets-path}/foundation/css/normalize.css"

rel="stylesheet" type="text/css" />
</kiln:block>

5.9. Templating 31

Kiln Documentation, Release 1.0

This ensures that nothing that might change between installations (such as development serving the files files through
Kiln, and production serving them off another dedicated server) is hard-coded into your templates.

See the settings in stylesheets/defaults.xsl for possible configurations.

5.10 Searching and Browsing

5.10.1 Introduction

Kiln has built-in support for using Solr to provide searching and browsing functionality. Kiln comes with:

• a Cocoon transformer to communicate with a Solr server as part of a pipeline match;

• customisable XSLT for generating Solr index documents from TEI files; and

• an Ant build task to index the entire site, by recursively crawl a Cocoon-generated page linking to the index
documents to be added to the server.

5.10.2 Configuration

A global variable called solr-server should be specified in the project’s sitemaps/config.xmap, with the
value being the full URL of the Solr server (including a trailing slash).

The Solr schema may need to be modified to accomodate extra fields, or to enable various faceting approaches. It is
less likely, but still possible, that the Solr configuration will need to be modified. Both of these files (schema.xml
and solrconfig.xml), and other configuration files, are found in webapps/solr/conf.

Search and browse pages are so project-specific that the appropriate XSLT and Cocoon matches need to be created for
them from scratch.

5.10.3 Built-ins

Kiln comes with a default indexing XSLT for TEI documents, using kiln/stylesheets/solr/
tei-to-solr.xsl. This may be customised via changes to the importing XSLT stylesheets/solr/
tei-to-solr.xsl. Other XSLT for indexing non-TEI documents may also be written; the Cocoon matches for
these should follow the pattern of the TEI indexing match (in solr.xmap#local-solr).

Kiln also includes an XSLT, kiln/stylehssets/solr/generate-query.xsl, for adding XInclude ele-
ments that reference search results to an XML document, based on supplied query parameters in the source XML. See
the documentation in the XSLT itself for details on the format of the supplied XML. When used in a pipeline, it must
be followed by an XInclude transformation step.

Additionally, the XSLT kiln/stylesheets/solr/merge-parameters.xsl adds appropriate elements to
the end of a query XML document, as above, from request data. sitemaps/internal.xmap provides a generic
way to generate a search results document using this method.

This approach is not as redundant as it might seem, with a Solr query string being transformed into XML and then back
into a query string that is run. It allows both for common query elements to be specified in an XML file, and also does
not require that the query string passed to merge-parameters.xsl be formatted as Solr requires. Parameters
can be repeated that generate-query.xsl will join together in the correct fashion. This frees whatever process
generates the XSLT parameter value from knowing anything about Solr’s details (eg, it can be a simple form with no
processing).

32 Chapter 5. Contents

http://lucene.apache.org/solr/

Kiln Documentation, Release 1.0

5.10.4 Query files

Solr query files in assets/queries/solr/ are a good way to provide static elements for a given search. They
can specify what fields to facet on, default query strings, sorting, and so on.

Attributes on the root query element may specify which fields should be appended to the general query
(@q_fields) and which fields should be appended to the general query as a range (@range_fields).

Child elements of query may specify a default attribute with the value true; the value of this element will only
be used if no querystring parameter has the same name.

Facet fields (facet.field) may specify a join attribute with the value or; that facet is treated as a multi-select
facet, with the selected values being ORed together. The default behaviour is for selected values to be ANDed together.

By default, the contents of fields are automatically escaped. When this is not desired, add an escape attribute with
the value false to the element.

5.10.5 Indexing non-TEI documents

Kiln currently only has code for indexing TEI documents, and its display of search results assumes that those results
come from TEI documents (in the content/xml/tei directory). To support the indexing and results display of
documents in other directories, two things must be done:

• Add an XSLT in stylesheets/solr to perform the indexing. The filename should be <dir>-to-solr.
xsl, where <dir> is the name of the directory under content/xml containing the documents.

• Add an appropriate condition path added to the xsl:choose in stylesheets/solr/
results-to-html.xsl in the template for result/doc in the search-results mode.

5.10.6 Upgrading Solr

There are two parts to upgrading Solr separately from a Kiln upgrade (if Kiln has not yet incorporated that version of
Solr): upgrading the solr webapp, and upgrading the Solr Cocoon transformer.

Upgrading the Solr webapp is straightforward, unless there are local modifications to the files under webapps/solr
(except in conf and data). If there are, either these changes can be merged back in to the new versions (either
manually or through whatever tools are available), or left in place.

First, delete all content in webapps/solr except for the conf and data directories. Next upack the contents
of the solr WAR file distributed with Solr into webapps/solr. This can be done with the command jar -xvf
<filename>.war. It is possible that there are incompatibilities between the new version of Solr and the existing
configuration files in webapps/solr/conf, in which case these will need to be resolved manually. The Solr admin
web page can be helpful in finding problems.

Upgrading the transformer is more complicated. After fetching a copy of the transformer source code, the JAR files
in the lib directory must be replaced with those from the Solr distribution. Unless there has been a change to Solr’s
API, the transformer code does not need to be modified. The transformer can be rebuilt using Apache Ant with the
command ant dist. The newly created solr.transformer.jar file in the dist directory must then be
copied to webapps/kiln/WEB-INF/lib/, along with the JARs in the lib directory. These must be put in place
of their equivalents (the filenames will differ, since the Solr JARs have the version number as part of the filename),
and all in the webapps/kiln/WEB-INF/lib/ and not a subdirectory.

5.11 Schematron validation

Kiln comes with pipelines and XSLT to perform Schematron validation of XML files.

5.11. Schematron validation 33

https://github.com/kcl-ddh/solr-transformer
https://ant.apache.org/
http://www.schematron.com/

Kiln Documentation, Release 1.0

The base transformation is the validate/*/*/**.xml match in kiln/sitemaps/schematron.xmap.
The first parameter is the schema filename (with no extension), expected to exist as assets/schematron/
<schema>.sch. The second parameter is the phase, which is a named subset of rules within the schema. If all
phases should be run, use #ALL as the value. The third parameter is the path to the XML file to be validated, relative
to content/xml/.

If the first parameter begins with a hash character (#), the remainder of the value is used as the basename of an ODD
file at assets/schema/<basename>.xml, from which all Schematron rules are extracted.

sitemaps/admin.xmap#local-schematron contains an example match that is meant to automatically ex-
tract the schema from the project’s encoding guidelines embedded in an ODD file. This functionality is not currently
available.

5.12 RDF / Linked Open Data

Kiln includes the RDF4J framework for handling RDF data. RDF4J operates as a pair of Java webapps
(rdf4j-server and rdf4j-workbench), and work no differently within Kiln as they do standalone. This
includes extending it, for example by using OWLIM as the repository, and using its web interfaces.

5.12.1 Setting up a repository

The RDF4J documentation covers how to create a repository. Once created, the name of the repository must be set
as the value of the sesame-server-repository variable in webapps/ROOT/sitemaps/config.xmap,
along with a base URI (rdf-base-uri).

(Note that RDF4J used to be called Sesame, and that the former name is still used in some parts of Kiln.)

5.12.2 Integration with Cocoon

Kiln integrates RDF4J into its Cocoon processing via a transformer and a set of pipelines. The local sitemap
sitemaps/rdf.xmap can be extended with matches to generate RDF/XML and SPARQL graph queries. The
basic operations are defined and described in the internal kiln sitemap kiln/sitemaps/sesame.xmap.

5.12.3 Upgrading RDF4J

There are two parts to upgrading RDF4J separately from a Kiln upgrade (if Kiln has not yet incorporated that version
of RDF4J): upgrading the rdf4j-server and rdf4j-workbench webapps, and upgrading the Sesame Cocoon transformer.

Upgrading the two RDF4J webapps is straightforward. First delete everything in webapps/rdf4j-workbench,
and everything except app_dir (where the project data is kept) in webapps/rdf4j-server. Next unpack the
contents of the two WAR files distributed with RDF4J into the appropriate directories. This can be done with the
command jar -xvf <filename>.war.

Upgrading the transformer is more complicated. After fetching a copy of the transformer source code, the JAR files
in lib/sesame-lib must be replaced with those from the RDF4J download. It is unlikely that all of the JARs that
come with RDF4J are required. Unless there has been a change to RDF4J’s API, the transformer code does not need
to be modified. The transformer can be rebuilt using Apache Ant with the command ant dist. All of the newly
created JAR files in the dist directory must then be copied to webapps/kiln/WEB-INF/lib/ in place of their
equivalents (the filenames will differ, since the RDF4J JARs have the version number as part of the filename).

34 Chapter 5. Contents

http://rdf4j.org/
https://rdf4j.org/documentation/tools/server-workbench/#creating-a-repository
https://github.com/kcl-ddh/sesame-transformer
https://ant.apache.org/

Kiln Documentation, Release 1.0

5.13 Fedora Repository

Kiln includes pipelines for fetching data from a Fedora Commons repository. The generic matches for fetching XML
and binary data are in webapps/ROOT/kiln/sitemaps/fedora.xmap, which should be accessed via matches
in webapps/ROOT/sitemaps/fedora.xmap. The latter likely need to be customised to match the way the
specific Fedora repository has been set up.

It is also necessary to set the global variable fedora-url in webapps/ROOT/sitemaps/config.xmap.

5.14 Multilingual sites

Kiln supports sites in which some or all of the content is available in more than one language. It does this by having a
language code as the first element in all public URLs (not internal, not admin).

For example, if the site consisted of resources at index.html, about/index.html, and about/process.html, and these
resources were available in both English and Telugu, the URLs for these resources would be:

• /en/index.html

• /en/about/index.html

• /en/about/process.html

• /te/index.html

• /te/about/index.html

• /te/about/process.html

5.14.1 Implementation

All of the matches in sitemaps/main.xmap incorporate a language code prefix that is used in the various trans-
formations. The language code is passed as a parameter to XSLT that include stylesheets/defaults.xsl.
This value is used in XSLT when creating links to textual content within Kiln.

A default language code must be set in sitemaps/config.xmap in the global variable
default-display-language.

Kiln also follows the approach for internationalisation (i18n) as documented in the Cocoon documentation. A sample
catalogue of translations is available in assets/translations/messages_en.xml; translations into other
languages should use the same filename convention and content format. Note that of the provided templates and
menus, only assets/templates/home.xml and assets/menu/main.xml have even partial i18n markup;
this must be added where appropriate to templates and XSLT.

5.14.2 HTTP content negotiation

Kiln does not include any code for handling automatic content negotiation based on the HTTP Accept-Language
header.

5.14.3 Nice URLs for monolingual sites

Monolingual sites also use the same URL scheme with a language code prefix, which may not be desired in production.
This problem can be solved by using, for example, mod_proxy and mod_proxy_html with Apache HTTPD to
rewrite headers and links so that users see the URLs without the language code prefix.

5.13. Fedora Repository 35

http://fedora-commons.org/
https://cocoon.apache.org/2.1/userdocs/i18nTransformer.html

Kiln Documentation, Release 1.0

5.15 Using Kiln as an independent backend

While Kiln provides facilities for creating and serving resources to user clients, it can equally well be used solely as
a backend to another system or systems operating as the frontend. There is nothing special or different about such
operation, and the same principles and approaches apply. Rather than a user client, such as a browser, making a request
to a URL and getting a resource, the frontend system makes the request, perhaps using AJAX, and then operates on
the resource.

5.15.1 Providing content for incorporation into HTML

A common use case is to have Kiln provide content that the frontend then incorporates into its own templating system
for display as HTML. Kiln provides an example template and pipeline showing how this might be achieved. The
template transforms TEI into HTML, and provides that, plus any metadata, CSS, and JavaScript that might be required
for correct display. All of these are made available in individual elements within the XML document that Kiln returns.

This allows the frontend system to collate the various pieces as it wishes without having to perform any complicated
transformations.

5.15.2 Requesting a resource with Python

Sample code for requesting a resource from Kiln using Python:

import requests

r = requests.get(kiln_resource_url)
xml = r.text
Process XML.
...

5.15.3 Requesting a resource with JavaScript

Sample code for requesting a resource from Kiln using JavaScript (with jQuery):

function xml_content_handler (xml) {
// Process XML.

}

$.get({
url: kiln_resource_url,
dataType: 'xml'

}).done(xml_content_handler);

5.16 Using web services

Kiln can interact with external web services that return XML by making HTTP requests with POSTed data. This is
done using Cocoon’s CInclude Transformer. There are three parts to the process, as follows:

1. Create a base query file (in assets/queries) that contains all of the static data for the request, and place-
holders for dynamic data. For example:

36 Chapter 5. Contents

http://cocoon.apache.org/2.1/userdocs/cinclude-transformer.html

Kiln Documentation, Release 1.0

<?xml version="1.0"?>
<data xmlns:cinclude="http://apache.org/cocoon/include/1.0"

xmlns:xi="http://www.w3.org/2001/XInclude">
<!-- POST a request to a GATE Named Entity Recognition service,

supplying the contents of a TEI file to be annotated. -->
<cinclude:includexml ignoreErrors="true">
<cinclude:src>http://www.example.org/gate/ner-service/</cinclude:src>
<cinclude:configuration>

<cinclude:parameter>
<cinclude:name>method</cinclude:name>
<cinclude:value>POST</cinclude:value>

</cinclude:parameter>
</cinclude:configuration>
<cinclude:parameters>

<cinclude:parameter>
<cinclude:name>source</cinclude:name>
<!-- Create a placeholder XInclude where the TEI XML is

wanted. -->
<cinclude:value><xi:include href="source-placeholder" /></cinclude:value>

</cinclude:parameter>
</cinclude:parameters>

</cinclude:includexml>
</data>

2. Write an XSLT to provide any dynamic data to the query. For example:

<?xml version="1.0"?>
<xsl:stylesheet version="2.0"

xmlns:cinclude="http://apache.org/cocoon/include/1.0"
xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="tei-filename" />

<!-- Replace the XInclude's placeholder href attribute with the
path to the supplied TEI file. -->

<xsl:template match="xi:include[@href='source-placeholder']">
<xsl:copy>

<xsl:attribute name="href">
<xsl:text>path/to/tei/directory/</xsl:text>
<xsl:value-of select="$tei-filename" />

</xsl:attribute>
</xsl:copy>

</xsl:template>

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()" />
</xsl:copy>

</xsl:template>

</xsl:stylesheet>

3. Create a pipeline for making the request and display the result. For example:

<map:match pattern="gate-ner/**.xml">
<map:generate src="../assets/queries/gate/ner.xml" />

(continues on next page)

5.16. Using web services 37

Kiln Documentation, Release 1.0

(continued from previous page)

<!-- Add an XInclude of the TEI file. -->
<map:transform src="../stylesheets/gate/ner.xsl">
<map:parameter name="tei-filename" value="{1}.xml" />

</map:transform>
<!-- Perform the XInclude of the TEI file. -->
<map:transform type="xinclude" />
<!-- Make the request. -->
<map:transform type="cinclude" />
<map:serialize type="xml" />

</map:match>

5.17 Kiln’s admin and editorial area

Kiln provides a URL space, under /admin/, for administrative and editorial tasks and resources. These may include
indexing documents into the Solr search engine, generating OAI-PMH records, and creating and harvesting RDF
triples into Sesame.

sitemaps/admin.xmap specifies the applicable pipelines.

5.17.1 Adding authentication

The simplest approach to password protecting the admin area is to make use of HTTP Authentication. The configu-
ration for this depends on which web server is sitting in front of Kiln — it may be Apache Tomcat, Apache HTTPD,
NGinix or something else — and its documentation should be consulted.

5.18 PDF and ePub generation

Kiln provides sample pipeline matches for PDF and ePub generation from TEI source files in sitemaps/main.
xmap. These make use of the same templating system used for HTML generation.

Unlike with HTML generation, however, Kiln does not provide XSLT to generate PDF and ePub output, as the vari-
ation in source markup and desired output between projects is too great. Instead either XSLT can be written from
scratch, or existing stylesheets from other projects can be adopted and adapted. The suite of stylesheets available from
the TEI website provide both XSL FO and ePub outputs; the former can be turned into PDF via Cocoon’s fo2pdf
serialiser (as per the example pipeline match).

5.19 Testing framework

Kiln provides a basic framework to run automated tests that check the XML output of a map:match with expected
output. Tests are stored in the webapps/ROOT/test-suite directory, with the expected data being stored under
data and the definition of the tests in files under cases.

The format for test-case files are specified in assets/schema/test/test_case.rng. Each test within a test-
case file specifies the path to the expected data XML file (relative to test-suite/data) and the id and parameters
of the map:match to be tested.

The admin menu links to the HTML report for running all of the tests in all of the test-cases under test-suite/
cases, noting for each test whether it passed or failed, and if it failed, giving a rough difference between the actual
and expected output.

38 Chapter 5. Contents

http://www.ietf.org/rfc/rfc2617.txt
http://tomcat.apache.org/
http://httpd.apache.org/
http://nginx.org/en/
http://www.tei-c.org/release/doc/tei-xsl-common/

Kiln Documentation, Release 1.0

5.20 Error handling

Kiln uses Cocoon’s built-in error handling mechanism. It provides two levels of handling. The first, defined in
sitemaps/main.xmap, makes use of the templating system to provide error messages that display in the style of
the site. The second, defined in sitemaps/config.xmap, is untemplated, and used only if there is a problem with
the code used in the first level error-handling.

Both levels will display all of the technical details Cocoon makes available when the global variable debug is set to
“1”, and hidden when it is set to “0”.

Error messages can be overridden if desired; this is already done for 404 errors, for which see sitemaps/main.
xmap.

5.21 License

Kiln is available under the Apache License. Unless otherwise specified, the following statement applies:

Copyright 2012 Department of Digital Humanities, King's College London

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

5.21.1 Components’ licenses

• Apache Cocoon, Apache Solr and Apache Ant are available under the Apache License.

• Sesame 2 is available under the BSD License.

• Jetty is available dual licensed under the Apache License and the Eclipse Public License.

5.22 Projects using Kiln

Over the past years and versions, Kiln has been used to generate more than 50 websites which have very different
source materials and customised functionality. Since DDH has in-house guidelines for using TEI P5 to create websites,
Kiln makes use of certain TEI markup conventions. However, it has been adapted to work on a variety of flavours of
TEI and other XML vocabularies, and has been used to publish data held in relational databases.

• Ancient Inscriptions of the Northern Black Sea

• Corpus of Romanesque Sculpture in Britain and Ireland

• Centre for the History and Analysis of Recorded Music

• The Complete Works of Ben Jonson: Online Edition

5.20. Error handling 39

http://www.apache.org/licenses/LICENSE-2.0.html
http://cocoon.apache.org/2.1/
http://lucene.apache.org/solr/
http://ant.apache.org/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.openrdf.org/
http://opensource.org/licenses/BSD-3-Clause
http://www.eclipse.org/jetty/
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.eclipse.org/legal/epl-v10.html
http://iospe.kcl.ac.uk/
http://www.crsbi.ac.uk/
http://www.charm.rhul.ac.uk
http://www.kcl.ac.uk/artshums/depts/ddh/research/projects/current/cwobj.aspx

Kiln Documentation, Release 1.0

• Digital Du Chemin

• Electronic Sawyer

• The Gascon Rolls Project

• Greek Bible in Byzantine Judaism

• Henry III Fine Rolls

• Hofmeister XIX

• Inscriptions of Roman Cyrenaica

• Inscriptions of Roman Tripolitania

• Jane Austen’s Fiction Manuscripts

• Jonathan Swift Archive

• Language of Landscape

• Digital Edition of Hermann Burger’s Lokalbericht

• Mapping Medieval Chester

• Nineteenth-Century Serials Edition

• Records of Early English Drama (REED)

• Schenker Documents Online

• Sharing Ancient Wisdoms

40 Chapter 5. Contents

https://github.com/DuChemin/
http://www.esawyer.org.uk/
http://www.gasconrolls.org/
http://gbbj.org/
http://www.frh3.org.uk
http://hofmeister.rhul.ac.uk
http://ircyr.kcl.ac.uk/
http://irt.kcl.ac.uk/
http://www.janeausten.ac.uk/
http://jonathanswiftarchive.org.uk/
http://www.langscape.org.uk
http://purl.org/lokalbericht
http://www.medievalchester.ac.uk/
http://ncse.kcl.ac.uk
https://ereed.library.utoronto.ca
http://www.schenkerdocumentsonline.org/
http://saws.cch.kcl.ac.uk/

	Further reading
	Requirements
	Support
	Tutorial
	Contents

